Abstract

Because optimising therapy for the management of diabetes mellitus remains challenging, the study investigated the effects of salmon calcitonin (Sct) and/or omega-3 fatty acids (N-3 – eicosapentaenoic acid and docosahexaenoic acid-3:2), compared to metformin, on selected biochemical parameters in male Wistar rats, in an experimental model of diabetes. Forty rats were used for this study. They were divided into eight groups of five rats each, which included: Normal control; Diabetic (D) control; D + N-3; D + low dose Sct (Sct. Lw); D + high dose Sct (Sct. Hi); D + N-3 + Sct.Lw; D + N-3 + Sct.Hi; and D + metformin. Diabetes was induced in overnight fasted rats by the administration of streptozotocin (65 mg/kg b.w., i.p.), 15 min after the administration of nicotinamide (110 mg/kg b.w., i.p.). Nine days later, Sct was administered at 2.5 and 5.0 IU/kg b.w./day (i.m.), while N-3 and metformin were administered at 200 and 180 mg/kg b.w./day (p.o.) respectively, for four weeks. Sct, N-3, and metformin significantly reduced total cholesterol, LDL-C, cortisol, c-telopeptide of type 1 collagen, and collagen type 2 alpha-1. The combined administration of Sct and N-3 had more favorable effects on triglyceride and HDL-C than either monotherapy. Unlike metformin and Sct. Hi, N-3 significantly reduced alkaline phosphatase activity. Moreover, N-3 significantly suppressed the hypocalcaemic, hyperglycaemic, and insulin resistance provoking actions of Sct. Furthermore, N-3 contradicted the hepatic glycogen depletion and inhibition of nitric oxide synthesis brought about by Sct. In conclusion, N-3 demonstrated antagonistic and non-additive actions with Sct. Moreover, the effects of the combined administration of Sct and N-3 were comparable to that of metformin; therefore, they might be considered as therapeutic alternatives in diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.