Abstract

Albumin is the most abundant plasma protein. Critical illness is often associated with altered, predominately decreased, serum albumin levels. This hypoalbuminaemia is usually corrected by administration of exogenous albumin. This study aimed to track the concentration-dependent influence of albumin on blood coagulation in vitro. Whole blood (WB) samples from 25 volunteers were prepared to contain low (19.3 ± 7.7 g/L), physiological (45.2 ± 7.8 g/L), and high (67.5 ± 18.1 g/L) levels of albumin. Haemostatic profiling was performed using a platelet function analyzer (PFA) 200, impedance aggregometry, a Cone and Platelet analyzer (CPA), calibrated automated thrombogram, and thrombelastometry (TEM). Platelet aggregation-associated ATP release was assessed via HPLC analysis. In the low albumin group, when compared to the physiological albumin group, we found: i) shortened PFA 200-derived closure times indicating increased primary haemostasis; ii) increased impedance aggregometry-derived amplitudes, slopes, ATP release, as well as CPA-derived average size indicating improved platelet aggregation; iii) increased TEM-derived maximum clot firmness and alpha angles indicating enhanced clot formation. TEM measurements indicated impaired clot formation in the high albumin group compared with the physiological albumin group. Thus, albumin exerted significant anticoagulant action. Therefore, low albumin levels, often present in cancer or critically ill patients, might contribute to the frequently occurring venous thromboembolism.

Highlights

  • Albumin, the most abundant plasma protein, has numerous functions in health

  • Primary haemostasis, assessed by means of the Platelet Function Analyzer (PFA) 200 utilizing membranes coated with collagen/epinephrine, was significantly attenuated in the presence of increasing levels of albumin (Table 1): Closure times were significantly prolonged with increasing concentrations of albumin

  • In the present study we show significant anticoagulant properties of albumin using several functional coagulation tests

Read more

Summary

Introduction

The most abundant plasma protein, has numerous functions in health. It contributes up to 80% of the total colloid osmotic pressure, transports drugs and endogenous compounds, acts as an effective plasma buffer, exhibits significant antioxidant potential, and maintains microvascular integrity [1,2,3].A link between low serum albumin and an increase in morbidity and mortality has been shown [4]. The most abundant plasma protein, has numerous functions in health. It contributes up to 80% of the total colloid osmotic pressure, transports drugs and endogenous compounds, acts as an effective plasma buffer, exhibits significant antioxidant potential, and maintains microvascular integrity [1,2,3]. A link between low serum albumin and an increase in morbidity and mortality has been shown [4]. Hypoalbuminaemia in hospitalized patients is associated with increased length of stay and higher complication rates [5]. Non-survivors of critical illness have lower serum.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call