Abstract
Effects of two derivatives of 1,4-dihydroisonicotinic acid (1,4-DHINA) against the monofunctional alkylating agent ethyl methanesulfonate (EMS) were studied in the micronucleus test in ( CBA × C57Bl/6 j ) mice. Adult males and pregnant females were treated with an antimutagen (i.p.) and 12 h later they were exposed to EMS (i.p.). The frequencies of micronucleated (MN) polychromatic erythrocytes (PCEs) in mouse bone marrow and foetal liver were analysed 6, 12, 18, 24, 30, 36, 48 or 24, 48 and 72 h after the mutagen injection. In adults, the maximum number of MNPCEs was observed 36 or 24 h after the EMS administration. In foetuses, which were treated in a maternal organism, such peak was found at 24 h. Pre-treatment of mice with the antimutagens 2,6-dimethyl-3,5-diethoxycarbonyl-4-(Na carboxylate)-1,4-dihydropyridine (DHP) and glutapyrone (GP) decreased the yield of MNPCEs in male bone marrow. Having been observed at a peak of MN induction, the anticlastogenic effect of DHP (1/10 LD 50 or 340 mg/kg) reached 30%. DHP at the doses of 0.5–1 mM/kg did not affect the EMS-induced frequency of MNPCEs in bone marrow, whereas GP inhibited it at the similar millimolar concentrations. Simultaneously with maternal bone marrow, foetal liver cells were analysed for MNs in the transplacental test. The anticlastogenic effect of DHP (1/10 LD 50) was found to be more prolonged and higher in females than in males and to average 50%, but this antimutagen was not efficient in foetuses. Both antimutagens did not change the polychromatic/normochromatic erythrocyte (PCE/NCE) ratio as compared with EMS action. Results presented indicate a peak of EMS-induced micronucleated cells in mouse bone marrow 24 or 36 h and in foetal liver 24 h after animal treatment. Two 1,4-DHINA derivatives exhibited anticlastogenic activity in adults, but not in foetuses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research/Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.