Abstract

The present study was undertaken to evaluate the anti-inflammatory activity and antigenotoxic effect of hydroalcoholic leaf extract of Persea americana (P. americana) in albino Wistar rats against whole body X-ray irradiation. Rats were orally administered with (25, 50, 100, 200, and 400 mg/kg body weight) of P. americana leaf extract for five days. On the fifth day after last administration, animals were exposed to whole body X-rays of 8 Gy. Based on Kaplan Meier’s survival analysis, 100 mg/kg body weight was selected as an optimum dose for radioprotection. The radioprotective potential was analysed by bone marrow micronucleus test and comet assay in peripheral blood lymphocytes. Biochemical estimations were performed in liver tissue homogenates. DNA damage indicators analysed through comet assay displayed significant reduction in olive tail movement (P < 0.01), percentage DNA in tail (P < 0.05) and tail length (P < 0.001) in pretreated group when compared to radiation group. P. americana leaf extract restored the levels of reduced glutathione, catalase, and reduced the levels of lipid peroxidation, protein carbonyls, and cyclooxygenase-2 levels in liver homogenates of pre-treated group. Decrease in micronucleated polychromatic erythrocytes (P < 0.05) was witnessed in P. americana pretreated group when compared to radiation control. Pretreatment also resulted in the increase of animal survival with dose reduction factor of 1.28. Our findings for the first time demonstrated that P. americana offers significant protection to rats from whole body exposure to X-rays and helps in antagonising the radiation effects, thereby combating acute radiation induced damage in living systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.