Abstract

We study the synchronization of chaos and hyperchaos in first-order time-delayed systems that are coupled using the nonlinear time-delay excitatory coupling. We assign two characteristic time delays: the system delay that is same for both the systems, and the coupling delay associated with the coupling path. We show that depending upon the relative values of the system delay and the coupling delay the coupled systems show anticipatory, complete, and lag synchronization. We derive a general stability condition for all the synchronization processes using the Krasovskii–Lyapunov theory. Numerical simulations are carried out to corroborate the analytical results. We compute a quantitative measure to ensure the occurrence of different synchronization phenomena. Finally, we set up an experiment in electronic circuit to verify all the synchronization scenario. It is observed that the experimental results are in good agreement with our analytical results and numerical observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.