Abstract
Restricted feeding schedules entrain behavioral and physiological circadian rhythms, which depend on a food-entrainable oscillator (FEO). The mechanism of the FEO might depend on digestive and endocrine processes regulating energy balance. The present study characterizes the dynamics of circulating corticosterone, insulin, and glucagon and regulatory parameters of liver metabolism in rats under restricted feeding schedules. With respect to ad libitum controls, food-restricted rats showed 1) an increase in corticosterone and glucagon and a decrease in insulin before food access, indicating a predominant catabolic state; and 2) a reduction in lactate-to-pyruvate and beta-hydroxybutyrate-to-acetoacetate ratios, indicating an oxidized cytoplasmic and mitochondrial redox state in the liver metabolism. All these changes were reversed after feeding. Moreover, liver energy charge in food-restricted rats did not show a significant modification before feeding, despite an increase in adenine nucleotides, but showed an important decrease after food intake. Variations detected in the liver of food-restricted rats are different from those prevailing under 24-h fasting. These observations suggest "anticipatory activity" of the liver metabolism to optimize the processing of nutrients to daily feeding. Data also suggest a possible relationship of the liver and endocrine signals with the FEO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.