Abstract

The influence of motor preparation on human motoneuron activity was studied by combining single motor unit recording techniques with reaction-time (RT) methods. The tonic activity of wrist extensor motor units associated with voluntary isometric contractions was analysed during preparation for a ballistic wrist extensor muscle contraction, using a time preparation procedure. Two durations of the preparatory period elapsing between the warning signal and the response signal were used in separate blocks of trials: a short preparatory period (1 s) allowing optimum time preparation, and a longer, non-optimum one (3 s). Changes in motoneuron tonic discharge patterns not associated with any changes in the force output were observed during the preparatory period, which suggests that these changes were subtle enough to prevent any changes in muscle contraction from occurring before the forthcoming movement. The changes observed were a lengthening of the mean interspike interval (ISI) and a decrease in the ISI variability. These data confirm that inhibitory mechanisms are activated during motor preparation and suggest that spinal inhibitory mechanisms are involved in the preparatory processes. The mechanisms possibly involved, such as presynaptic inhibition, disfacilitation processes or AHP conductance changes, are discussed. The fact that the preparation-induced effects on motoneuron activity were particularly prominent during the last part of the 3 s preparatory period suggests that they were probably related to the neural processes underlying temporal estimation. The anticipatory changes in motoneuron activity observed here during preparation for action provide evidence that central influences act on spinal motoneurons well before it is time to act.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.