Abstract

BackgroundFollowing mild traumatic brain injury, individuals often exhibit quantifiable gait deficits over flat surfaces, but little is known about how they control gait over complex surfaces. Such complex surfaces require precise neuromotor control to anticipate and react to small disturbances in walking surfaces, and mild traumatic brain injury-related balance deficits may adversely affect these gait adjustments. MethodsThis study investigates anticipatory and reactive gait adjustments for expected and unexpected underfoot perturbations in healthy adults (n = 5) and individuals with mild traumatic brain injury (n = 5). Participants completed walking trials with random unexpected or expected underfoot perturbations from a mechanized shoe and inertial measurement units collected kinematic data from the feet and sternum. Linear mixed-effects models assessed the effects of segment, group, and their interaction on standardized difference of accelerations between perturbation and non-perturbation trials. FindingsBoth groups demonstrated similar gait strategies when perturbations were unexpected. During late swing phase before expected perturbations, persons with mild traumatic brain injury exhibited greater lateral acceleration of their perturbed foot and less lateral movement of their trunk compared with unperturbed gait. Control participants exhibited less lateral foot acceleration and no difference in mediolateral trunk acceleration compared with unperturbed gait during the same period. A significant group*segment interaction (p < 0.001) during this part of the gait cycle suggests the groups adopted different anticipatory strategies for the perturbation. InterpretationIndividuals with mild traumatic brain injury may be adopting cautious strategies for expected perturbations due to persistent neuromechanical deficits stemming from their injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call