Abstract

With time, the Nipah virus has been proved as a fatal and dangerous pathogen for humanity. Nipah virus has its origin from bats and severely affects the respiratory as well as neurological organs. Regular outbreaks and unavailability of proper treatment for Nipah virus infection, demands the designing of vaccine for this disease. This prediction study was conducted to explore B cell epitopes from the Nipah virus’s proteome using the immunoinformatics approach. In this curious quest of anticipation of antigenic sites for the Insilico peptide vaccine for the Nipah virus, nine NV-B strain proteins were retrieved for further series of investigations. After sequential refining through immunoinformatics approaches, a total of 26 epitopes was selected to perform molecular modeling and docking. PEPstrMOD and Swiss model, respectively performed 3D modeling of epitopes with their respective alleles. Based on minimum binding energy, four epitopes viz. LHLGNFVRR, LNLSPLIQR, YHNMSPINR and FRRNNAIAF were predicted as promiscuous B cell epitopes. Based on low binding affinity and high population coverage worldwide, epitope LHLGNFVRR was finally selected. Increased Stability of the LHLGNFVRR- HLA DRB_1301 complex during simulation studies exhibit it as the most promising vaccine bidder. So complex of LHLGNFVRR- HLA DRB_1301 has shown most significance result for vaccine and for further validation and confirmation, wet lab and clinical trials can provide the potential of predicted peptides for the subunit vaccine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call