Abstract
In this paper, we study the existence of random periodic solutions for semilinear stochastic differential equations. We identify them as solutions of coupled forward–backward infinite horizon stochastic integral equations (IHSIEs), using the “substitution theorem” of stochastic differential equations with anticipating initial conditions. In general, random periodic solutions and the solutions of IHSIEs, are anticipating. For the linear noise case, with the help of the exponential dichotomy given in the multiplicative ergodic theorem, we can identify them as the solutions of infinite horizon random integral equations (IHSIEs). We then solve a localised forward–backward IHRIE in C(R,Lloc2(Ω)) using an argument of truncations, the Malliavin calculus, the relative compactness of Wiener–Sobolev spaces in C([0,T],L2(Ω)) and Schauder's fixed point theorem. We finally measurably glue the local solutions together to obtain a global solution in C(R,L2(Ω)). Thus we obtain the existence of a random periodic solution and a periodic measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.