Abstract

We propose a novel mathematical model for the activity of microbloggers during an external, event-driven spike. The model leads to a testable prediction of who would become most active if a spike were to take place. This type of insight into human behaviour has many applications, as it identifies key players who can be targeted with information in real time when the network is most receptive. The model takes account of the fact that dynamic interactions evolve over an underlying, static network that records "who listens to whom". Our fundamental assumption is that, in the case where the entire community has become aware of an external news event, a key driver of activity is the motivation to participate by responding to incoming messages. We validate the resulting algorithm on a large scale Twitter conversation concerning the appointment of a UK Premier League football club manager. We also find that the half-life of a spike in activity can be quantified in terms of the network size and the typical response rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.