Abstract

Abstract Climate change holds great potential to affect the Lake Erie ecosystem by altering the timing and magnitude of precipitation driven river discharge and nutrient runoff in its highly agricultural watershed. Using the SWAT hydrologic model and an ensemble of global climate models, we predicted Maumee River (Ohio) discharge during the 21st century under two Intergovernmental Panel on Climate Change (IPCC) greenhouse gas emissions scenarios: RCP4.5 (mid-range, moderate reductions) and RCP8.5 (high, “business as usual”). Annual discharge was projected to increase under both scenarios, both in the near-century (RCP4.5 = 6.5%; RCP8.5 = 2.0%) and late-century (RCP4.5 = 9.2%; RCP8.5 = 15.9%), owing to increased precipitation and reduced plant stomatal conductance. Holding fertilizer application rates at baseline levels, we found that reduced winter surface runoff and increased plant phosphorus (P) uptake led to a respective decrease in annual total P (TP) runoff in the near-century (RCP4.5 = − 4.3%; RCP8.5 = − 6.6%) and by the late-century (RCP4.5 = − 14.6%; RCP8.5 = − 7.8%). Likewise, soluble reactive P (SRP) runoff was predicted to decrease under both scenarios in the near-century (RCP4.5 = − 0.5%; RCP8.5 = − 3.5%) and by the late-century (RCP4.5 = − 11.8%; RCP8.5 = − 8.6%). By contrast, when fertilizer application was modeled to increase at the same rate as plant P uptake, TP loading increased 4.0% (0.9%) in the near-century and 9.9% (24.6%) by the late-century and SRP loading increased 10.5% (6.1%) in the near-century and 26.7% (42.0%) by the late-century under RCP4.5 (RCP8.5). Our findings suggest that changes in agricultural practices (e.g., fertilization rates) will be key determinants of Maumee River discharge during the 21st century.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.