Abstract

Candida spp., causes invasive fungal infections, especially in immune-compromised patients and the propensity of antifungal resistance against azole-based drugs need to be addressed. This study is thus aimed to characterize the anticandidal effect of the cinnamic acid extracted from the barks of Cinnamomum cassia. Five species of Fluconazole-resistant Candida sp. were retrieved from the department repertoire. The extraction of CA was performed by three different methods followed by silica gel column chromatography. Eluant was subjected to FTIR and XRD analysis for confirmation. The anticandidal activity of the CA was checked by the agar disc diffusion method and the MIC and MFC were determined. The anti-biofilm effect of CA was assessed using the CLSM technique followed by the biocompatibility check using MTT assay in normal HGF cell lines. CA was best extracted with the hot maceration method using ethanol with a maximum yield of 6.73mg. Purification by column chromatography was achieved using benzene, acetic acid, and water (6:7:3) mobile phase. CA was confirmed by FTIR with absorption peaks and by XDR based on strong intensity. CA was found to possess promising anticandidal activity at 8µg/mL with MIC and MFC values determined as 0.8µg/mL and 0.08µg/mL respectively. Antibiofilm activity by CLSM analysis revealed biofilm inhibition and was biocompatible at 8.5µg/ml concentrations in HGF cell lines until 24h. The study findings conclude that CA is the best alternative to treat candidal infection warranting further experimental preclinical studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.