Abstract

This study researched the mineral composition of Korean washed-dehydrated solar salt (WDS) without bittern. It also evaluated the anticancer effects of doenjang (WDSD) prepared using WDS on azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colon cancer in C57BL/6 mice. The mineral composition of WDS showed lower Mg (11.71 ± 1.89 g/kg) and S (9.77 ± 2.88 g/kg) contents, and it was confirmed that mice in the WDSD group (AOM/DSS+WDSD) displayed significantly lower weight loss, colon length reduction, and tumor formation compared with the control (Con) group. In addition, pathologically, it was confirmed that the extent of epithelial cell damage and inflammation in the colon tissue of the WDSD group was restored to a state similar to that of the Nor group. Besides, WDSD regulated the protein expression of apoptosis (Bcl-2-associated X protein [Bax], B cell lymphoma-2 [Bcl-2], B cell lymphoma-extra large [Bcl-xL], and caspase 9, caspase 3), and p53, p21, and proinflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α), thereby inducing the apoptosis and cell cycle arrest of cancer cells and suppressing inflammation. In addition, the intestinal microbiota of the mice treated with WDSD were more diverse, with an abundance of Bifidobacterium, a lactic acid bacterium beneficial to colon health, was also a greater presence of Faecalibaculum, which showed antitumor effects. These results indicate that solar salts and their different processing methods affect their functional health-promoting properties. In addition, the inhibitory effect on colon cancer was further enhanced when doenjang was prepared with WDS with low Mg and S content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call