Abstract

MicroRNA-21 (miR-21) expression in glioblastoma inhibits the expression of pro-apoptotic genes, thereby promoting tumor growth. A previous study showed that the amphiphilic R3V6 peptide is an efficient carrier of the anti-miR-21 antisense oligodeoxynucleotide (antisense-ODN) into cells in vitro. In the current study, in vivo delivery of antisense-ODN using the R3V6 peptide was evaluated in a glioblastoma animal model. In vitro transfection showed that the R3V6 peptide delivered antisense-ODN more efficiently than polyethylenimine (25 kDa, PEI25k) in C6 glioblastoma cells. For in vivo evaluation, antisense-ODN/R3V6 complex was injected intratumorally into a C6 glioblastoma xenograft animal model. Tumor growth was suppressed by the injection of the antisense-ODN/R3V6 complex, compared with the antisense-ODN/PEI25k and scrambled-antisense-ODN (scr-antisense-ODN)/R3V6 complexes. Real-time RT-PCR showed that miR-21 levels were reduced most efficiently by the antisense-ODNR3V6 complex in tumors. Due to inhibition of miR-21, expression of the programed cell death 4 (PDCD4) gene was promoted in tumors, resulting in the induction of apoptosis of tumor cells. These results suggest that delivery of antisense-ODN using R3V6 peptides may be useful for the development of antisense-ODN therapy for glioblastoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.