Abstract

The acidic tumor environment has emerged as a crucial factor influencing the metastatic potential of cancer. We investigated the effect of an acidic environment on the acquisition of metastatic properties in MCF7 breast cancer cells and explored the inhibitory effects of gallic acid. Prolonged exposure to acidic culture conditions (over 12 weeks at pH 6.4) induced the acquisition of migratory and invasive properties in MCF7 cells, accompanied by increased expression of Matrix Metalloproteinase 2 and 9 (MMP2 and MMP9, respectively), together with alterations in E-cadherin, vimentin, and epithelial-to-mesenchymal transition markers. Gallic acid effectively inhibited the survival of acidity-adapted MCF7 (MCF7-6.4/12w) cells at high concentrations (>30 μM) and reduced metastatic characteristics induced by acidic conditions at low concentration ranges (5-20 μM). Moreover, gallic acid suppressed the PI3K/Akt pathway and the nuclear accumulation of β-catenin, which were elevated in MCF7-6.4/12w cells. These findings highlight the potential of gallic acid as a promising therapeutic agent for metastatic traits in breast cancer cells under acidic conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.