Abstract
Surgical resection of osteosarcoma is always accompanied by residual metastasis of tumor cells and bone tissue defects. In this work, a novel kind of gelatin/polylactic acid (PLA) coaxial fiber membrane with a shell layer containing doxorubicin-loaded hydroxyapatite (DOX@nHAp) nanoparticles and a core layer containing Icariin (ICA) was developed for antitumor and bone enhancement at the defect site. Physical evaluation displayed that the composite membrane provided moderate hydrophilicity, enhanced tensile strength (Dry: 2–3 MPa, wet: 1–2 MPa) and elasticity (70–100 %), as well as increased specific surface area and pore volume (19.39 m2/g and 0.16 cm3/g). In SBF, DOX@nHAp in the fibers promoted biomineralization on the fiber surface. In in vitro evaluation, approximately 80 % of DOX had a short-term release during the first 8 days, followed by long-term release behavior of ICA for up to 40 days. CCK-8 results confirmed that the membrane could actively support MC3T3-E1 cells proliferation and was conductive to high alkaline phosphatase expression, while the viability of MG-63 cells was effectively inhibited to 50 %. Thus, the dual-loaded fibrous membrane with a coaxial structure and nHAp is a promising system for anticancer and defects reconstruction after osteosarcoma surgery.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.