Abstract

The current investigation reports the structural and biological evaluation of silver nanoparticles (AgNPs) biosynthesized from the pericarp extract of Cucumis melo L. (muskmelon). The AgNPs were characterized by ultraviolet-visible (UV-Vis) spectrophotometry, XRD (X-ray diffraction), SEM (scanning electron microscopy) and EDAX (energy-dispersive X-ray spectroscopy). The XRD analysis showed that biosynthesized AgNPs were having FCC (face centered cubic) crystalline structures. Further, the SEM and EDAX showed spherically shaped AgNPs having an average size of 25 nm. The AgNPs effectively inhibited the growth of Bacillus subtilis and Escherichia coli. Moreover, the cytotoxic assay of AgNPs revealed effective cytotoxicity against different cancer cells, such as HeLa, HCT-116, PC-3 and Jurkat in a dose reliant way. The cell viability was noticed to range from 50% to 60% with IC50 values ranging from 150 μg/mL to 224 μg/mL. The lower cell viability indicates the toxic effects of biosynthesized AgNPs against these malignant cells. Thus, the current study shows that these biosynthesized AgNPs could be utilized in various medical applications in near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call