Abstract

BackgroundAnticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism. The malignant peripheral nerve sheath tumor (MPNST), a very aggressive, therapy resistant, and Neurofibromatosis type 1 associated neoplasia, shows a high metabolic activity and affected patients may therefore benefit from 3-BrPA treatment. To elucidate the specific mode of action, we used a controlled cell model overexpressing proteasome activator (PA) 28, subsequently leading to p53 inactivation and oncogenic transformation and therefore reproducing an important pathway in MPNST and overall tumor pathogenesis.MethodsViability of MPNST cell lines S462, NSF1, and T265 in response to increasing doses (0–120 μM) of 3-BrPA was analyzed by CellTiter-Blue® assay. Additionally, we investigated viability, reactive oxygen species (ROS) production (dihydroethidium assay), nicotinamide adenine dinucleotide dehydrogenase activity (NADH-TR assay) and lactate production (lactate assay) in mouse B8 fibroblasts overexpressing PA28 in response to 3-BrPA application. For all experiments normal and nutrient deficient conditions were tested. MPNST cell lines were furthermore characterized immunohistochemically for Ki67, p53, bcl2, bcl6, cyclin D1, and p21.ResultsMPNST significantly responded dose dependent to 3-BrPA application, whereby S462 cells were most responsive. Human control cells showed a reduced sensitivity. In PA28 overexpressing cancer cell model 3-BrPA application harmed mitochondrial NADH dehydrogenase activity mildly and significantly failed to inhibit lactate production. PA28 overexpression was associated with a functional glycolysis as well as a partial resistance to stress provoked by nutrient deprivation. 3-BrPA treatment was not associated with an increase of ROS. Starvation sensitized MPNST to treatment.ConclusionsAggressive MPNST cells are sensitive to 3-BrPA therapy in-vitro with and without starvation. In a PA28 overexpression cancer cell model leading to p53 inactivation, thereby reflecting a key molecular feature in human NF1 associated MPNST, known functions of 3-BrPA to block mitochondrial activity and glycolysis were reproduced, however oncogenic cells displayed a partial resistance. To conclude, 3-BrPA was sufficient to reduce NF1 associated MPNST viability potentially due inhibition of glycolysis which should lead to the initiation of further studies and promises a potential benefit for NF1 patients.

Highlights

  • Anticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism

  • Aggressive malignant peripheral nerve sheath tumor (MPNST) cells are sensitive to 3-BrPA therapy in-vitro with and without starvation

  • In a PA28 overexpression cancer cell model leading to p53 inactivation, thereby reflecting a key molecular feature in human Neurofibromatosis type 1 (NF1) associated MPNST, known functions of 3-BrPA to block mitochondrial activity and glycolysis were reproduced, oncogenic cells displayed a partial resistance

Read more

Summary

Introduction

Anticancer compound 3-bromopyruvate (3-BrPA) suppresses cancer cell growth via targeting glycolytic and mitochondrial metabolism. The malignant peripheral nerve sheath tumor (MPNST), a very aggressive, therapy resistant, and Neurofibromatosis type 1 associated neoplasia, shows a high metabolic activity and affected patients may benefit from 3-BrPA treatment. Neurofibromatosis type 1 (NF1) associated malignant peripheral nerve sheath tumors (MPNST) still do not respond well to chemotherapy and increase mortality of NF1 patients markedly. We investigated the effect of the anticancer compound 3-bromopyruvate (3-BrPA), a small alkylating compound that suppresses cancer cell metabolism. Due to its structural similarity to lactate and pyruvate, 3-BrPA selectively enters cancer cells through monocarboxylic acid transporters which are poorly expressed in normal cells. Aerobic glycolysis offers survival advantages such as faster ATP production and increased tolerance towards fluctuations in oxygen supply [5]. VDAC with bound HK-II is involved into the regulation of cell death via release of pro-apoptotic factors into cytosol such as cytochrome c (cyt c), apoptosis inducing factor (AIF) and Bcl-2-associated X protein (Bax) [11, 12]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.