Abstract

The adsorption properties of the lung cancer agent indapamide (IND) on gold nanoparticles (AuNPs), were studied with the help of surface-enhanced Raman scattering techniques. The structure-activity of the IND and INDA molecule has been studied using DFT/B3LYP methodology. NBO analysis reveals that, both the molecules are stabilized by a C─H… O intramolecular hydrogen bonding, apart from the conjugative and intramolecular charge transfer interactions. The analysis of the electron density of frontier molecular orbital analysis gives a comparative idea of the reactivity, the low kinetic stability, and low value of energy gap indicating the electron transport in the molecule and thereby its bioactivity. The molecular electrostatic potential, local and global reactivity indicators predict the reactive site of the molecules. FT-IR, FT-Raman, and surface-enhanced Raman scattering have been investigated and compared with the theoretical prediction. Effective in-silico (molecular docking) biological activity screening of the molecules was checked on lung cancer cells. In-vitro (surface-enhanced Raman scattering techniques and MTT assay) analysis confirms the results from the in-silico analysis. This study promotes the potential of SERS agents for targeted drug delivery and photothermal therapy and the novelty of the IND and INDA molecule against lung cancer activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call