Abstract

The bubbles electrochemically generated by gas evolution reactions are commonly driven off the electrode by buoyancy, a weak force used to overcome bubble adhesion barriers, leading to low gas-transporting efficiency. Herein, a Janus electrode with asymmetric wettability has been prepared by modifying two sides of a porous stainless-steel mesh electrode, with superhydrophobic polytetrafluoroethylene (PTFE) and Pt/C (or Ir/C) catalyst with well-balanced hydrophobicity, respectively, affording unidirectional transportation of as-formed gaseous hydrogen and oxygen from the catalyst side to the gas-collecting side during water splitting. "Bubble-free" electrolysis was realized while "floating" the Janus electrode on the electrolyte. Antibuoyancy through-mesh bubble transportation was observed while immersing the electrode with the PTFE side downward. The wettability gradient within the electrode endowed sticky states of bubbles on the catalyst side, resulting in efficient bubble-free gas transportation with 15-fold higher current density than submerged states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.