Abstract
Myofibroblast apoptosis promotes the resolution of liver fibrosis. However, retaining macrophages may enhance reversal. The effects of specifically stimulating myofibroblast apoptosis in vivo were assessed. A single chain antibody (C1-3) to an extracellular domain of a myofibroblast membrane protein was injected as a fluorescent- or gliotoxin conjugate into mice with liver fibrosis. C1-3 specifically targeted alpha-smooth muscle actin positive liver myofibroblasts within scar regions of the liver in vivo and did not co-localise with liver monocytes/macrophages. Injection of free gliotoxin stimulated a 2-fold increase in non-parenchymal cell apoptosis and depleted liver myofibroblasts by 30% and monocytes/macrophages by 50% but had no effect on fibrosis severity in the sustained injury model employed. In contrast, C1-3-targeted gliotoxin stimulated a 5-fold increase in non-parenchymal cell apoptosis, depleted liver myofibroblasts by 60%, did not affect the number of monocytes/macrophages and significantly reduced fibrosis severity. Fibrosis reduction was associated with increased metalloproteinase-13 levels. These data demonstrate that specific targeting of liver myofibroblast apoptosis is the most effective anti-fibrogenic therapy, supporting a role for liver monocytes and/or macrophages in the promotion of liver fibrosis reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.