Abstract

The success of breeding programs is limited by the sparse knowledge about endocrine regulation and biochemical reactions in the psittacine male tract. The immunocytochemical analysis of parrots' testicular tissues provides an insight into their reproductive system but is often hampered by the lack of reliable antibodies. In the present study, we tested a large panel of antibodies raised against steroid receptors, steroidogenic enzymes, relaxin peptides including their receptors, and proliferation markers on paraffin sections of testicular tissue from eight psittacine genera representing three continents. All investigated species displayed the tested markers in somatic and germ cells of testis and epididymis, even though cell distribution was partly heterogenous and in species-specific patterns. The 17β-hydroxysteroid-dehydrogenase-2, 3β-hydroxysteroid-dehydrogenase, and smooth muscle actin allowed the cross-species differentiation between active and nonactive gonads. The remaining steroidogenic enzymes, steroid receptors, relaxin peptides, and Ki67 proved to be suitable to define reproductive activity depending on the parrot species. Adapting immunocytochemical methods to different psittacines was successful, though various cellular expression patterns do not allow the transfer of results among different parrot species. However, the availability of a reliable repertory of sexual markers is important to examine reproductive biology of psittacine birds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.