Abstract

The amino acid sequence of the principal neutralizing determinant (PND) of 224 cases of human immunodeficiency virus type 1 (HIV-1) was determined and the most frequently occurring sequence was used as a peptide antigen for studying virus-specific antibody responses. In our present study, a linear peptide of the most frequent PND was first synthesized and then oxidized to create a disulfide-bridged loop conformation. Then, in order to construct a macromolecular structure for the purpose of increasing antigenicity, the synthetic peptide was conjugated to a core peptide. We compared the immunogenicity of the disulfide-bridged loop PND peptide antigen (AG4) and the linear PND peptide antigen (AG5). After immunizing rabbits 5 and 6 times with both peptides, the results obtained using ELISA revealed that AG4 (conformational-loop type) was more capable of inducing a high titer of antigen-specific antibodies than was AG5 (linear type). Despite an amino acid sequence homology of 72%, a 1:8 dilution of serum raised against AG4 inhibited 81.9% of HIV-1IIIB-mediated cell fusion, suggesting that conformational V3 loop peptide is able to elicit an antibody response which is strongly HIV-1-specific.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call