Abstract

Recombinant hepatitis B virus vaccines confer protection by eliciting specific antibodies against the hepatitis B surface antigen (HBsAg), known as anti-HBs. However, the performance of rapid anti-HBs diagnostic tests generates concerns regarding consistency. Novel indicators of protection might be developed by monitoring changes in targeted HBsAg-epitope profile after vaccination. In this work, we test the feasibility of our peptide-phage display platform in identifying B-cell epitopes targeted at different time-points after hepatitis B vaccination. We combined this platform with a unique approach for in silico analysis of enriched sequences. Serum samples collected from one single patient who had two boosting immunizations against hepatitis B virus were used in two-rounds of selection experiments. Five epitope candidates from HBsAg were identified in silico; most of them were previously reported in the literature. Our results suggest that the number of recognized HBsAg epitopes is related to the decrease of anti-HBs over time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.