Abstract

Accommodation in patients transplanted with ABO incompatible allografts describes a state in which antibodies are produced against the incompatible blood group carbohydrate antigen; however, the graft is not rejected. The present study describes an experimental model for antibody-mediated accommodation of organs expressing incompatible carbohydrate antigens. The model includes alpha1,3galactosyltransferase knockout mice that lack the alpha-gal epitope (Galalpha1-3Galbeta1-4GlcNAc-R), transplanted heterotopically with wild-type (WT) hearts expressing this epitope. The mice are irradiated and receive memory anti-Gal B cells by adoptive transfer. Immunization of these mice with pig-kidney membranes induces the production of large amounts of anti-Gal, which binds specifically to alpha-gal epitopes. Under the described accommodation protocol, transplanted mice produce anti-Gal that binds to alpha-gal epitopes on endothelial cells of the grafted WT heart; however, the WT hearts continued to function for months. Second WT hearts transplanted into accommodating, anti-Gal producing mice, were not rejected. Anti-Gal in accommodating mice was not cytolytic, whereas anti-Gal in rejecting mice readily induced complement-mediated lysis of cells expressing alpha-gal epitopes. In addition, accommodating mice displayed a preferential increase in the anti-Gal immunoglobulin (Ig)G2b subclass. The immune system may be manipulated to accommodate grafts expressing incompatible carbohydrate antigens by preferential production of noncytolytic anticarbohydrate antibodies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call