Abstract

A highly sensitive flow-injection capacitive immunosensor was developed for detection of the mycotoxin zearalenone (ZEN). Different strategies for immobilization of an anti-ZEN antibody on the surface of a gold electrode, i.e. polytyramine or self-assembled monolayers (SAMs) of 3-mercaptopropionic acid (3-MPA) and lipoic acid (LA), were used and their performances were compared. The LA- and 3-MPA-based systems showed broad linear ranges for ZEN determination, i.e. from 0.010 nM to 10 nM and from 0.020 nM to 10 nM, respectively. Under optimal conditions, the LA-based immunosensor was capable of performing up till 13 regeneration-interaction cycles (with use of glycine HCl, pH 2.4) with a limit of detection (LOD) of 0.0060 nM, equivalent to 1.9 pg mL−1. It also demonstrated a good inter-assay precision (RSD < 10%). However, the tyramine-based capacitive immunosensor showed a bad repeatability (only 4 regeneration-interaction cycles were possible) and inter-assay precision (RSD > 15%) which did not allow sensitive and precise measurements. The LA-based method was compared with a direct ELISA. These results demonstrated that the label-free developed capacitive immunosensor had a better sensitivity and shorter analysis time in comparison with the direct microwell-plate format.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.