Abstract

Antibody-drug conjugates (ADCs) are a class of biopharmaceuticals in which cytotoxic agents are conjugated to monoclonal antibodies (mAbs), allowing targeted drug delivery. Present heterogeneous ADCs (conjugated in random variable positions) suffered from issues of stability, reproducibility, efficacy, etc. Recent advances have led to the development of homogeneous ADC preparations by site-specific conjugation, allowing the control of the drug-to-antibody ratio. These approaches have increased the therapeutic window, efficacy, and batch-to-batch consistency of the ADC preparations. Antibodies carry a pair of heterogeneous N-glycans in the Fc regions, which are critical for antibody function. Drug conjugation through glycoengineering has been achieved with different approaches, including the use of endo-β-N-acetylglucosaminidase (ENGases) and monosaccharyl transferase mutants. In this article, we summarize different glycoengineering approaches for antibody-drug conjugation, and discuss their advantages for the development of next-generation homogeneous ADCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.