Abstract

ImmunoRNases combine tumor targeting by antibodies with the cytotoxic action of ribonucleases from the RNase A superfamily. This study investigated for the first time all catalytic active human RNase A family members (1 to 8) as effector components of antibody fusion proteins. ImmunoRNase fusion proteins were constructed using the CD30-specific bivalent recombinant scFv-Fc antibody SH313-B5. Production of the resulting entirely human immunoRNases 1 to 8 was done in mammalian cells by secretion of active forms. The immunoRNases mediated CD30-specific cell binding and showed ribonucleolytic activity. Interestingly, immunoRNases 1 and 2 were active in the presence of up to 5-/20-fold molar excess of the pancreatic RNase inhibitor (RI), which is supposed to efficiently inhibit all human RNase A activity. ImmunoRNases 3, 4, 6 and 7 were only inhibited by several fold molar excess of RI, whereas immunoRNases 5 and 8 were already completely inactive at equimolar RI concentrations. Compared to free RNases, activity and RI sensitivity were not significantly changed by antibody fusion or dimerisation. ImmunoRNase3 and 5 mediated tumor growth inhibition at low nanomolar concentrations. Anti-tumor activity was antigen-specific and did not show any correlation with ribonucleolytic activity or RI sensitivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call