Abstract

Regions of hypoxia occur in most tumors and are a predictor of poor patient prognosis. Hypoxia-activated prodrugs (HAPs) provide an ideal strategy to target the aggressive, hypoxic, fraction of a tumor, while protecting the normal tissue from toxicity. A key challenge associated with the development of novel HAPs, however, is the ability to visualize the delivery of the prodrug to hypoxic regions and determine where it has been activated. Here, we report a modified version of the commonly used nitroimidazole bioreductive group that incorporates the fluoroethyl epitope of the antibody-based hypoxia imaging agent, EF5. Attachment of this group to the red fluorescent dye, dicyanomethylene (DCM), enabled us to correlate the release of the DCM dye with imaging of the reduced bioreductive group using the EF5 antibody. This study confirmed that the antibody was imaging reduction and fragmentation of the pro-fluorophore. We next employed the modified bioreductive group to synthesize a new prodrug of the KDAC inhibitor Panobinostat, EF5-Pano. Release of EF5-Pano in hypoxic multiple myeloma cells was imaged using the EF5 antibody, and the presence of an imaging signal correlated with apoptosis and a reduction in cell viability. Therefore, EF5-Pano is an imageable HAP with a proven cytotoxic effect in multiple myeloma, which could be utilized in future in vivo experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.