Abstract
Clostridium difficile causes antibiotic-associated diarrhea and colitis in humans through the actions of toxin A and toxin B on the colonic mucosa. At present, broad-spectrum antibiotic drugs are used to treat this disease, and patients suffer from high relapse rates after termination of treatment. This study examined the role of both toxins in pathogenesis and the ability of orally administered avian antibodies against recombinant epitopes of toxin A and toxin B to treat C. difficile-associated disease (CDAD). DNA fragments representing the entire gene of each toxin were cloned, expressed, and affinity purified. Hens were immunized with these purified recombinant-protein fragments of toxin A and toxin B. Toxin-neutralizing antibodies fractionated from egg yolks were evaluated by a toxin neutralization assay in Syrian hamsters. The carboxy-terminal region of each toxin was most effective in generating toxin-neutralizing antibodies. With a hamster infection model, antibodies to both toxins A and B (CDAD antitoxin) were required to prevent morbidity and mortality from infection. In contrast to vancomycin, CDAD antitoxin prevented relapse and subsequent C. difficile reinfection in the hamsters. These results indicate that CDAD antitoxin may be effective in the treatment and management of CDAD in humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.