Abstract
To begin elucidating the biochemical basis of the polarized membrane features of the blood-brain barrier (BBB), a series of immunochemical and immunoperoxidase studies were initiated with bovine brain microvessels that make up the BBB in vivo. A rabbit antiserum was prepared against isolated bovine brain BBB plasma membranes. The bovine microvessel plasma membranes were radioiodinated with chloramine-T, and the antiserum selectively immunoprecipitated a 46K protein. The antibodies directed against the 46K protein were quantitatively absorbed with bovine brain capillaries but not with rat kidney or liver powder. Only the capillaries of brain reacted with the rat kidney-absorbed antiserum in immunoperoxidase studies of ethanol-fixed, 8-micron sections of bovine brain cortex, whereas the capillaries in heart, liver, and kidney did not react. This antiserum also strongly illuminated the lateral membranes of isolated bovine brain capillary endothelial cells grown in primary tissue culture. These studies provide evidence for a polarized distribution of a surface antigen in bovine brain capillary endothelial cells that is not present in capillary endothelia of liver, heart, or kidney. The correlation of the immunoperoxidase and immunoprecipitation techniques suggests that a candidate for the asymmetrically distributed surface antigen in the BBB is the 46K protein. The relationship between the 46K protein and the composition of BBB tight junctions remains to be determined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.