Abstract

BackgroundC. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis infection in humans and information on the functionality of the plasmid proteins is also very limited.ResultsWhen antibodies from women urogenitally infected with C. trachomatis were reacted with the plasmid proteins, all 8 pORFs were positively recognized by one or more human antibody samples with the recognition of pORF5 protein (known as pgp3) by most antibodies and with the highest titers. The antibody recognition of the pORFs was blocked by C. trachomatis-infected HeLa but not normal HeLa cell lysates. The pgp3 fusion protein-purified human IgG detected the endogenous pgp3 in the cytosol of C. trachomatis-infected cells with an intracellular distribution pattern similar to that of CPAF, a chlamydial genome-encoded protease factor. However, the human antibodies no longer recognized pgp3 but maintained recognition of CPAF when both antigens were linearized or heat-denatured. The pgp3 conformation is likely maintained by the C-terminal 75% amino acid sequence since further deletion blocked the binding by the human antibodies and two conformation-dependent mouse monoclonal antibodies.ConclusionThe plasmid-encoded 8 proteins are both expressed and immunogenic with pgp3 as the most immunodominant antigen during chlamydial infection in humans. More importantly, the human anti-pgp3 antibodies are highly conformation-dependent. These observations have provided important information for further understanding the function of the plasmid-encoded proteins and exploring the utility of pgp3 in chlamydial diagnosis and vaccination.

Highlights

  • C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8

  • Human antibody recognition of C. trachomatis plasmid proteins To determine whether the plasmid-encoded proteins are expressed and immunogenic during C. trachomatis infection in humans, the 8 pORFs were expressed as GST fusion proteins and the fusion proteins were reacted with 15 human antisera in an ELISA (Fig. 1)

  • Five C. trachomatis genome-encoded proteins were used as immunodominant antigen controls and each of them was recognized by 7 or more human antiserum samples, which is consistent with our previous observations [24,25]

Read more

Summary

Introduction

C. trachomatis organisms carry a cryptic plasmid that encodes 8 open reading frames designated as pORF1 to 8. It is not clear whether all 8 pORFs are expressed during C. trachomatis infection in humans and information on the functionality of the plasmid proteins is very limited. The L or LGV (lymphogranuloma venereum) organisms including serovars L1–3 are more invasive than other urogenital tract serovars and can infect rectal tissues. Despite the apparent differences in tissue tropism, all C. trachomatis serovars including MoPn undergo a common intracellular biphasic growth cycle [8]. The internalized EBs can rapidly differentiate into reticulate bodies (RBs), the metabolically active but non-infectious form of chlamydial organisms. The successful intracellular replication along with the infection-induced inflammatory responses is thought to be mainly responsible for Chlamydia-induced diseases [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.