Abstract

Antibodies against acetylcholine receptors (AChRs) cause pathogenicity in myasthenia gravis (MG) patients through complement pathway-mediated destruction of postsynaptic membranes at neuromuscular junctions (NMJs). However, antibodies against muscle-specific kinase (MuSK), which constitute a major subclass of antibodies found in MG patients, do not activate the complement pathway. To investigate the pathophysiology of MuSK-MG and establish an experimental autoimmune MG (EAMG) model, we injected MuSK protein into mice deficient in complement component five (C5). MuSK-injected mice simultaneously developed severe muscle weakness, accompanied by an electromyographic pattern such as is typically observed in MG patients. In addition, we observed morphological and functional defects in the NMJs of EAMG mice, demonstrating that complement activation is not necessary for the onset of MuSK-MG. Furthermore, MuSK-injected mice exhibited acetylcholinesterase (AChE) inhibitor-evoked cholinergic hypersensitivity, as is observed in MuSK-MG patients, and a decrease in both AChE and the AChE-anchoring protein collagen Q at postsynaptic membranes. These findings suggest that MuSK is indispensable for the maintenance of NMJ structure and function, and that disruption of MuSK activity by autoantibodies causes MG. This mouse model of EAMG could be used to develop appropriate medications for the treatment of MuSK-MG in humans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.