Abstract
Gut microbiota play an important role in the pathophysiology of type 2 diabetic mellitus (T2DM) and biodisposition of drugs. Our previous study demonstrated that T2DM rats had the decreased plasma exposure of clopidogrel active metabolite (Clop-AM) due to upregulation of P-glycoprotein (P-gp). However, whether the change to clopidogrel (Clop) disposition under T2DM condition is associated with gut microbiota needs to be elucidated. In the study, we used an antibiotic cocktail consisting of ampicillin, vancomycin, metronidazole, and neomycin to disrupt gut microbiota and observed their influence on pharmacokinetic profiles of Clop-AM. Antibiotic administration markedly alleviated T2DM rats' phenotype including hyperglycemia, insulin resistance, oxidative stress, inflammation, hyperlipidemia, and liver dysfunction. Meanwhile, treatment with antibiotics significantly reversed the reduced systemic exposure of Clop-AM in T2DM rats relative to control rats, which was associated with the decreased intestinal P-gp level that might promote Clop absorption, resulting in more Clop transformation to Clop-AM. Fecal microbiome analysis exhibited a serious disruption of gut microbiota after antibiotic treatment with the sharply reduced microbial load and the altered microbial composition. Interestingly, an in vitro study showed that antibiotics had no influence on P-gp mRNA leve in SW480 cells, suggesting the microbiome disruption, not the direct role of antibiotics on P-gp expression, contributes to the altered P-gp level and Clop disposition in T2DM rats. The findings add new insights into the potential impact of gut microbiota on Clop biodisposition. Significance Statement 1.Antibiotics increase systemic exposure of Clop-AM in T2DM rats, which is associated with the downregulation of P-gp level.2.Antibiotics-induced disruption of gut microbiota, not direct effect of antibiotics on P-gp and CYPs expression, contributes to the altered Clop disposition.3.Antibiotics also alleviate T2DM phenotype including hyperglycemia, hyperlipidemia, insulin resistance, liver dysfunction and inflammation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Drug metabolism and disposition: the biological fate of chemicals
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.