Abstract

Listed by WHO as an antibiotic-resistant priority pathogen, Pseudomonas aeruginosa (P.A.) is a serious threat in nosocomial infections. Its high antibiotic resistance is attributed to major mechanisms that can be categorized into intrinsic, acquired, and adaptive resistance. This study tests the ability of three commonly used antibiotics to inhibit new biofilm formation and eradicate mature biofilm growth, as well as investigate changes in the expression levels of selected genes coding for multidrug efflux pumps in P.A. planktonic cells and biofilms before and after treatment with antibiotics to provide a conceptual estimate of the activity of the efflux transporters that work to extrude antibiotics leading to a reduction in their effectiveness. Antimicrobial susceptibility testing was conducted with Ofloxacin (OFLX), Tobramycin (TOB), and Ceftazidime (CAZ) to determine Mean Inhibitory Concentration (MIC) and Mean Bactericidal Concentration (MBC) using microtiter plate-based biofilm assay and spectrophotometric quantification. Extraction of total RNA was performed from planktonic cultures, inhibition phase, and eradication phase P.A. biofilms. Real-time quantitative reverse transcriptase PCR was utilized to analyze the changes in expression of the mexAB, mexXY, and oprM genes. Three (3) antibiotics that have proven to show less resistance are OFLX, TOB, and CAZ when tested against overnight cultures of P.A. strain PA01. Results showed that OFLX is best for bactericidal properties, which is also supported by the viability assay data obtained from Propidium Iodide staining. Our study showed that the PAO1 strain is susceptible to OFLX for both inhibition and eradication of mature biofilms. TOB was most effective at higher concentrations in the eradication phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call