Abstract

BackgroundBeef cattle in North America frequently receive an antibiotic injection after feedlot placement to control and manage bovine respiratory disease. The potential collateral effect of these antibiotics on the bovine microbiome is largely unknown. Therefore, we determined the longitudinal impact of two commonly administered veterinary antibiotics, oxytetracycline and tulathromycin, on the fecal and nasopharyngeal (NP) microbiota of beef cattle that were transported to a feedlot. We also report the effect these antibiotics have on several antibiotic resistance determinants in both the fecal and NP microbiome.ResultsOxytetracycline and tulathromycin perturbation of the bovine fecal and NP microbiota was greatest at days 2 and 5. Although the NP microbiota of the tulathromycin-treated cattle had recovered by day 12, the NP microbiota of the oxytetracycline-treated group remained altered through day 34. Overall, the NP microbiota appeared to be more sensitive to antibiotic treatment than the fecal microbiota. Members of the bacterial Microbacteriaceae family were most notably affected by antibiotic administration in the NP microbiota. Both antibiotics protected against Pasteurella spp. in the nasopharynx at days 2 and 5. Despite very similar diets at both locations, the largest shift in the fecal and NP microbiota occurred after transport to the feedlot (P < 0.05). Antibiotic resistance determinants in the NP microbiome were also affected more strongly by antibiotic treatment than those in the fecal microbiome. Oxytetracycline increased the proportion of erm(X), sul2, tet(H), tet(M), and tet(W) in NP samples and tet(M) and tet(W) in fecal samples, at day 12 (P < 0.05). The effect of tulathromycin on the relative abundance of resistance genes in the NP microbiome was greatest at day 34 as erm(X), sul2, and tet(M) were enriched (P < 0.05).ConclusionsAdministration of a single injection of oxytetracycline and tulathromycin resulted in significant changes in the NP and fecal microbiota during the first 5 days after treatment. Antibiotic treatment also increased the relative abundance of several antibiotic resistance determinants in the fecal and NP microbiome at either day 12 or 34.

Highlights

  • Beef cattle in North America frequently receive an antibiotic injection after feedlot placement to control and manage bovine respiratory disease

  • Administration of a single injection of oxytetracycline and tulathromycin resulted in significant changes in the NP and fecal microbiota during the first 5 days after treatment

  • Antibiotic treatment increased the relative abundance of several antibiotic resistance determinants in the fecal and NP microbiome at either day 12 or 34

Read more

Summary

Introduction

Beef cattle in North America frequently receive an antibiotic injection after feedlot placement to control and manage bovine respiratory disease. We determined the longitudinal impact of two commonly administered veterinary antibiotics, oxytetracycline and tulathromycin, on the fecal and nasopharyngeal (NP) microbiota of beef cattle that were transported to a feedlot. Bovine respiratory disease (BRD), called shipping fever, remains the most common cause of morbidity and mortality after feedlot placement [1], resulting in significant economic losses [2]. It is a multifactorial disease but bacterial species, including Bibersteinia trehalosi, Histophilus somni, Mannheimia haemolytica, Mycoplasma bovis, and Pasteurella multocida, are frequently implicated [3]. In the USA for example, the macrolide tulathromycin was reported to be used as metaphylaxis in 45.3% feedlots at placement and oxytetracycline in 17.4% (USDA, 2013)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call