Abstract

Triple-negative breast cancers (TNBC) lack expression of three important receptors, and have limited treatment options. High expression of junctional adhesion molecule-A (JAM-A) has been linked with aggressive tumor phenotypes including TNBC. This study aimed to evaluate the bioactivity of a JAM-A-down-regulating compound, Tetrocarcin-A, in TNBC. TNBC cell viability, colony formation and xenograft growth were examined in Tetrocarcin-A-treated HCC38 human cells, 4T1 mouse cells or patient-derived primary cells. Protein expression of cell fate signaling effectors was examined by immunoblotting (versus transient JAM-A gene silencing). Apoptotic pathways were investigated in parallel. Tetrocarcin-A reduced TNBC cell viability in vitro and in an in ovo/semi-in vivo xenograft model. Tetrocarcin-A-induced JAM-A down-regulation and reduced ERK phosphorylation, followed by c-FOS phosphorylation on its transcription-regulating residue, which down-regulated several inhibitor of apoptosis (IAP) proteins and induced caspase-dependent intrinsic pathway of apoptosis. Tetrocarcin-A merits further investigation as a novel anti-tumor agent in TNBC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.