Abstract

BackgroundCoagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests.MethodsCoagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms.ResultsMost coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%), gentamicin (83.3%) and oxacillin (91.7%) and susceptible to vancomycin (100%), ciprofloxacin (100%), and rifampicin (79.2%). Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration.ConclusionWe conclude that the resistance of coagulase-negative staphylococci to multiple antibiotics initially remain similar when the bacteria shift from a planktonic growth mode into an early attached mode, then increase significantly as the adherent mode further develops. Furthermore, preformed biofilms of some CoNS are enhanced by oxacillin in a dose-dependent manner.

Highlights

  • Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units

  • Staphylococcal isolates Twenty-four Coagulase-negative staphylococci (CoNS) isolates from blood cultures of very low birth weight (VLBW) newborns receiving treatment at the Royal Women's Hospital (RWH) neonatal intensive care units (NICUs) were examined to obtain an overall view of the antibiotic susceptibility patterns of strains circulating in the unit and to determine the effect of antibiotics at serum achievable concentrations on preformed biofilms (Table 1) [33]

  • While the endpoint of complete killing may be more desirable, minimum biofilm eradication concentrations (MBECs) of the first-line antibiotics used in NICUs were far above the upper detection limit used in this study (1024 μg/ml) [29]

Read more

Summary

Introduction

Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Antibiotic resistance of CoNS biofilms is likely to have multiple causes including failure of antibiotics to reach the extracellular polymer substance embedded biofilm cells, a micro-environment unfavourable to antimicrobial activity, slow bacterial growth, activation of stress responses within biofilms, phenotypically resistant persister cells, and genotypically resistant cells selected by antibiotic exposure in biofilms [15,16]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call