Abstract

Antibiotic resistome can be carried by the bioaerosols and propagate from wastewater treatment plants (WWTPs) to the atmosphere, but questions remain regarding their mobility, bacterial hosts, source, and resistome risk. Here, fine particulate matter (PM2.5) was collected within and around a large WWTP and analyzed by the metagenomic assembly and binning. PM2.5 was discovered with increasing enrichment of total antibiotic resistance genes (ARGs), potentially mobile ARGs, and antibiotic-resistant bacteria (ARB) along the WWTP-downwind-upwind gradient. Some ARGs were found to be flanked by certain mobile genetic elements and generally mediated by plasmids in WWTP-PM2.5. Totally, 198 metagenome assembled genomes assigning to seven phyla were identified as the ARB, and a contig-based analysis indicated that 32 pathogens were revealed harboring at least two ARGs. Despite disparate aerosolization potentials of ARGs or ARB at different WWTP units, high resistome risks were found, along with the dominant contribution of wastewater for airborne ARGs (44.79–62.82%) and ARB (35.03–40.10%). Among the detected WWTP matrices, the sludge dewatering room was characterized by the highest resistome risk associated with PM2.5. This study underscores the dispersion of ARGs and ARB from WWTPs to the atmosphere and provides a reference for managing risks of antibiotic resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call