Abstract
Both drinking water treatment processes and distribution can lead to antibiotic resistome variation, yet the variation of antibiotic resistome in the whole drinking water supply system (DWSS) combined with seasonality remains unknown. In this study, microbial community, antibiotic resistome, mobile genetic elements (MGEs) co-existing with antibiotic resistance genes (ARGs) and ARG hosts would be explored along a DWSS for four seasons with metagenome assembly. Multidrug and bacitracin ARGs were dominant ARGs in DWSS. Integrase, plasmids, recombinase and transposase were major MGEs co-existing with ARGs. Filtration and disinfection treatments could alter the ARG relative abundance, mainly via changing the abundance of ARG hosts (Limnohabitans and Polynucleobacter), which was influenced by water total organic carbon (TOC) content. When TOC was relatively high, filtration could proliferate ARGs via promoting antibiotic resistance bacteria (ARB) but chlorine dioxide could decrease ARGs via killing ARB. Filtration played an important role in controlling ARGs by reducing ARB when TOC was relatively low. The stimulation effect of disinfection on ARGs existed in more oligotrophic environment. Distribution could enrich ARGs in higher temperature by increasing MGEs co-occurring with ARGs and diversifying ARG hosts. MGEs co-occurring with ARGs became more abundant and diverse in disinfected water in warmer seasons. Microbial community was the most important factor determining the antibiotic resistome along a DWSS. These findings extend the knowledge about how and why water treatment processes and pipe distribution shape drinking water antibiotic resistome in different seasons.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.