Abstract

The purpose of this research was to characterize the antibiotic resistance profiles of Campylobacter spp. derived from chicken and pig feces collected from farms in Jiangsu Province, China, and to analyze the relevant resistance mechanisms among antimicrobial-resistant Campylobacter spp. isolates. Antibiotic susceptibility to nine antibiotic agents was tested with the microdilution method in 93 Campylobacter spp. (45 C. jejuni and 25 C. coli from chickens; 23 C. coli from pigs). High rates of resistance were observed to nalidixic acid (79.6%), erythromycin (75.3%), tetracycline (68.8%), azithromycin (66.7%), ciprofloxacin (64.5%), and gentamicin (35.5%), with a lower resistance rate to florfenicol (8.6%). The prevalence of the tested antibiotic resistance in C. coli was higher than in C. jejuni from chickens. The rate of antimicrobial resistance to ciprofloxacin in C. coli isolates from chickens was 100.0%, and the C. coli isolates from pigs were all resistant to erythromycin (100%). Most of C. jejuni (64.4%) and C. coli (64.5%) isolates displayed multi-drug resistance. All the Campylobacter spp. isolates resistant to fluoroquinolones had the C257T mutation in the gyrA gene. All 64 tetracycline-resistant Campylobacter spp. isolates were positive for the tetO gene. The tetA gene was also amplified in 6.5% of Campylobacter spp. isolates, whereas tetB was not detected among the isolates. The A2075G point mutation in the 23S rRNA gene occurred in 86.1% (62/72) of the macrolides-resistant Campylobacter spp. isolates, and the ermB gene was identified in 49 Campylobacter spp. isolates (30 C. jejuni and 19 C. coli). Amino acid insertions or mutations in the L4 and L22 ribosomal proteins were not linked to macrolide resistance. These results highlight the high prevalence of resistance to multiple antibiotics, particular macrolides, among Campylobacter spp. from chickens and pigs in Jiangsu Province, China, which is probably attributable to the overuse of antimicrobials in chicken and pig production. These findings recommend the more cautious use of critical antimicrobial agents in swine and poultry production. Stringent and continuous surveillance is required to reduce the drug-resistant campylobacteriosis in food animals and humans.

Highlights

  • Campylobacteriosis is an essentially foodborne zoonotic disease worldwide (Allos, 2001)

  • The occurrence of Campylobacter was higher in the broilers (57.5%) than in the layers

  • We found that the rates of fluoroquinolone resistance in C. coli (92.0% and 100%) and C. jejuni isolates (80.0% and 66.7%) from chickens were higher than the rates of resistance in C. coli isolates from pigs (65.2% and 21.7%)

Read more

Summary

Introduction

Campylobacteriosis is an essentially foodborne zoonotic disease worldwide (Allos, 2001). Most of these human illnesses involve C. jejuni (81%) or C. coli (8.4%) (Sifré et al, 2015). Enteric diseases caused by the thermophilic species C. jejuni, C. coli, C. lari, and C. upsaliensis range from asymptomatic infections to severe inflammatory bloody diarrhea (Ketley, 1997). Campylobacter spp. widely and asymptomatically colonize the intestinal tracts of food producing animals (Altekruse et al, 1999; Harvey et al, 1999; Stanley and Jones, 2003), and C. jejuni is the main species affecting chickens, whereas C. coli is mainly found in pigs (Sáenz et al, 2000; Haruna et al, 2013). Intestinal content spillage could contaminate the meat and meat products (Weijtens et al, 1997; Gill et al, 1999)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.