Abstract
The environment disseminates antimicrobial-resistance genes; however, it remains challenging to distinguish whether human activities exacerbate antimicrobial resistance or what is natural. Here, we quantified ~300 resistance-related genes in 200+ Scottish soil samples. Location or land use does not explain gene differences, but nutrient levels reduce gene richness. Elevated levels of metals increased gene richness, and selenium increased transposase levels. Rainfall and persistent organic pollutants also increased transposase relative abundance, possibly promoting conditions conducive to the horizontal transfer of antimicrobial-resistance genes. Selenium and polychlorinated biphenyls were primary factors in gene abundance, while polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and pH influenced gene diversity. Polychlorinated biphenyls are derived from anthropogenic activities, highlighting human activities’ potential impact on gene prevalence. This is the first national-scale, high spatial resolution dataset of antimicrobial-resistance genes in Scottish soils and provides a novel resource on which to build future studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.