Abstract

Manure application as fertilizer can increase environmental exposure risk, as antibiotics, antibiotic resistance bacteria (ARB), and antibiotic resistant genes (ARGs) can be transmitted to agricultural fields, and adjacent natural systems. Understanding how specific antibiotics and ARGs respond within different manure fractions during on-farm management is limited. The study objective was to conduct a mass flow analysis determining the fate of antibiotic resistance factors (antibiotics, ARGs, and ARB) through solid-liquid separation, with the solid fraction continuing through a bedding recovery unit (BRU) via high temperature rotary composting for use of the manure solids as dairy cow bedding. The results show that most of the manure mass containing the antibiotic resistance factors went untreated following solid-liquid separation, with 95 % of the mass leaving the separator as a liquid and pumped to a storage lagoon for field application and 5 % proceeding to BRU processing. The tetracyclines and tulathromycin sorbed to the manure solids, while the beta lactams, ampicillin, and benzylpenicilloic acid were only found in the liquid fraction. The removal of antibiotic residuals during the BRU composting was insignificant, yet 40 %-73 % of the antibiotics were in the liquid fraction. The BRU composting was 100 % effective in removing the ARB examined. Five of the eight ARGs (Intl1, sul1, tetQ, tetX, and tetM) had significant reduction (>95 %) following the BRU composting treatment. While the three other ARGs (tetW, ermB, and bla2) remained constant despite treatment. This study highlighted the importance of examining manure management from a mass balance perspective and understanding antibiotic resistance risk factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.