Abstract

As one of the most influential and troublesome human pathogens, Acinetobacter baumannii (A. baumannii) has emerged with many multidrug-resistant strains. After collecting 33 complete A. baumannii genomes and 84 representative antibiotic resistance determinants, we used the Vaxign reverse vaccinology approach to predict classical type vaccine candidates against A. baumannii infections and new type vaccine candidates against antibiotic resistance. Our genome analysis identified 35 outer membrane or extracellular adhesins that are conserved among all 33 genomes, have no human protein homology, and have less than 2 transmembrane helices. These 35 antigens include 11 TonB dependent receptors, 8 porins, 7 efflux pump proteins, and 2 fimbrial proteins (FilF and CAM87009.1). CAM86003.1 was predicted to be an adhesin outer membrane protein absent from 3 antibiotic-sensitive strains and conserved in 21 antibiotic-resistant strains. Feasible anti-resistance vaccine candidates also include one extracellular protein (QnrA), 3 RND type outer membrane efflux pump proteins, and 3 CTX-M type β-lactamases. Among 39 β-lactamases, A. baumannii CTX-M-2, -5, and -43 enzymes are predicted as adhesins and better vaccine candidates than other β-lactamases to induce preventive immunity and enhance antibiotic treatments. This report represents the first reverse vaccinology study to systematically predict vaccine antigen candidates against antibiotic resistance for a microbial pathogen.

Highlights

  • Acinetobacter baumannii is a Gram-negative opportunistic bacterial pathogen that is responsible for a diverse range of infections including ventilator-associated pneumonia, skin and wound infections, urinary tract infections, meningitis and bacteremia [1]

  • We used 33 completed and annotated genome sequences from National Center for Biotechnology Information (NCBI) database, which consist of both multi-drug resistant (MDR) strains and sensitive strains and represent the main epidemic A. baumannii lineages spread worldwide

  • Table 1. 33 complete A. baumannii genomes used in our reverse vaccinology (RV) study

Read more

Summary

Introduction

Acinetobacter baumannii is a Gram-negative opportunistic bacterial pathogen that is responsible for a diverse range of infections including ventilator-associated pneumonia, skin and wound infections, urinary tract infections, meningitis and bacteremia [1]. The majority of infections caused by A. baumannii are hospital-acquired, most commonly in the intensive care setting of severely ill patients. Severe community-acquired pneumonia caused by A. baumannii has been reported [2]. A. baumannii has become one of the most important and troublesome human pathogens with its increased number of infections and emergence of more threatening multidrug-resistant and pan-drug resistant strains [3]. Antibiotic resistance has greatly affected the effectiveness of antibiotic treatments. The development of alternative approaches is necessary

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.