Abstract

Introduction: A large number of infectious processes are associated with opportunistic microorganisms. The phenotype of antibiotic resistance of such pathogens is multidrug-resistant strains with the presence of various β-lactamases. Our objective was to determine the phenotypic and genotypic features of antibiotic resistance of staphylococci, enterobacteria, and non-fermenting Gram-negative bacteria – the cause of infectious diseases in patients of various health facilities of Nizhny Novgorod. Material and methods: Using classical microbiological methods and molecular genetic studies, we analyzed 486 strains of microorganisms isolated from the upper respiratory tract, intestines, urine, and wound discharge of patients in 2019–2020. In all isolates, the phenotype of antibiotic resistance was determined by the disco-diffusion method (Bioanalyse, Turkey) and using the Multiscan FC spectrophotometer (ThermoScientific, Finland) with Microlatest tablets (PLIVA-Lachema, Czech Republic), along with molecular features of resistance mechanisms by PCR on the CFX96 device (BioRad, USA) using AmpliSens kits (Russia). Results and discussion: The results showed that the most prevalent causative agents of infectious diseases (40.7 %) were Gram-negative bacteria, of which Enterobacteriaceae and non-fermenting bacteria accounted for 27.1 % and 13.6 % of cases, respectively. Staphylococci were isolated in 37.6 % of patients: S. aureus and coagulase-negative staphylococci induced 13.4 % and 24.2 % of cases, respectively. The analysis of antibiotic resistance of the isolates showed a high level of antimicrobial resistance in all hospitals, regardless of the isolation locus. The phenotype of methicillin-resistant strains was found in 26.3 % and 37.9 % of S. aureus and coagulase-negative staphylococci, respectively; the mecA gene was found in 89.0 % of methicillin-resistant staphylococci. The highest number of antibiotic-resistant strains among Gram-negative microorganisms was observed in K. pneumoniae, A. baumannii, and P. aeruginosa. We established that 61.7 % of K. pneumoniae, 75.1 % of A. baumannii, and 58.2 % of P. aeruginosa were resistant to carbapenems. The results of molecular genetic studies confirmed the presence of serine carbapenemases KPC and OXA groups in all multidrug-resistant K. pneumoniae and A. baumannii; genes of the metallo-β-lactamase of VIM group were found in 40.9 % strains of P. aeruginosa. The production of numerous β-lactamases and the presence of determinants of antibiotic resistance in the genome determine the virulent properties of opportunistic microorganisms. Conclusion: The antibiotic resistance of opportunistic microorganisms is the cause of developing a chronic infectious process. Today, a wide spread of antibiotic-resistant infectious agents is a serious public health problem, which determines the need for constant microbiological monitoring and studies of molecular mechanisms of resistance to identify the most potent antibiotics and to determine the ways of eradication of multidrug-resistant strains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call