Abstract

BackgroundCoagulase-negative Staphylococci (CoNS) are a significant cause of hospital-acquired and foreign-body-related infections. We conducted this research to assess methicillin susceptibility of CoNS by disc diffusion, agar dilution, and polymerase chain reaction (PCR) methods and to assess the antimicrobial susceptibility pattern.MethodsWe received 123 CoNS isolates from different specimens including blood, endotracheal tube, and central venous catheter. We performed sample processing, identification, and characterization following standard guidelines. Antimicrobial susceptibility was tested based on clinical and laboratory standards institute guidelines. We detected methicillin-resistant coagulase-negative staphylococci (MRCoNS) through mecA gene, disc diffusion method, and agar dilution method and compared the accuracy with PCR as reference.ResultsWe detected eight species of CoNS with Staphylococcus epidermidis as the most common. Most of the samples were received from the intensive care unit and blood was the dominant specimen followed by endotracheal-tube aspirate. Seventy-one percentage of isolates were methicillin-resistant by PCR method; disc diffusion and agar dilution method detected methicillin resistance with an accuracy of 96.7% and 98.3%, respectively. Antimicrobial susceptibility revealed an association between the different origins of samples, and also among the types of sample. Similarly, a comparison of the degree of resistance of antimicrobial agents between mecA gene positive and negative isolates showed significant differences. Vancomycin, linezolid, and teicoplanin are still effective for treating MRCoNS.ConclusionCoNS are a crucial cause of human infections especially in an intensive care unit setup where the use of devices is common. Disc diffusion and agar dilution are reliable for the detection of MRCoNS. The degree of antimicrobial resistance is much higher in organisms obtained from intensive care unit and foreign-body-related infections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.