Abstract

Actinomycin-D production by a biofilm-forming estuarine isolate viz Streptomyces sp. MS 310 is studied in small-scale shaken cultures, as well as in a 25 L rotating disk bioreactor, (RDBR) which, when operated at a disk rotational speed of 1 revolution/day with 50% disk submergence, mimics the intertidal conditions of the microbe’s niche estuarine habitat-alternating 12 h periods of inundation and exposure. The ideal pH and temperature for antibiotic production are determined (pH 10, 30°C) through a designed experimental study using shaken flasks. Subsequently, operating conditions in the RDBR are investigated employing a 3n experimental design wherein each of two (n = 2) parameters viz. aeration and disk submergence are considered at three levels viz high, medium, and low: 9.0, 6.0, and 3.0 L/min for aeration rate; and 75, 50, and 25% for disk submergence, (while maintaining the rotational speed at 1.0 rev/day). The niche-mimic condition along with maximum permissible aeration is found to be most favorable for antibiotic production — peak antibiotic activity (PAA) and peak activity attainment rate (PAAR) simultaneously attaining their highest values: 40 mm and 2.13 mm/h, respectively. Both PAA and PAAR increase with increasing aeration at all operating conditions examined — particularly, at the niche-mimic condition, a threefold increase in aeration rate (3∼9 L/min) causes PAA to increase by 33%, whereas PAAR increases by 2.5 times, thus pointing to the strong aeration dependence of this actinomycin-D producer. Again, compared to the best values obtained in the 500 mL shaken flask experiments, corresponding RDBR values are 16% higher for PAA and more than 5 times higher for PAAR — strong evidence for employing these novel bioreactors for cultivation of antibiotic-producer marine microbes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call