Abstract

AbstractIncorporating antibiotics into biocompatible nanoscale non‐woven fibrous mats could provide utility for wound healing applications and for incorporation into wound dressing materials. In this study, the antibiotic chloramphenicol (Cm) was incorporated into electrospun poly(lactic‐co‐glycolic acid) (PLGA) nanofibers, which were then tested for inhibition of bacterial growth for multiple bacterial species (Escherichia coli, Staphylococcus aureus, Bacillus cereus, Salmonella typhimurium, and Pseudomonas aeruginosa). In addition, the cytotoxicity of Cm‐PLGA nanofibers was examined for two types of mammalian cells including mouse embryonic stem cells and fibroblasts. Electrospun PLGA nanofibers containing Cm were able to reduce bacterial growth on solid agar plates for all species except for P. aeruginosa. In liquid culture, Cm‐loaded nanofibers inhibited growth for E. coli, B. cereus and S. typhimurium by 93% or greater, while P. aeruginosa and S. aureus growth was inhibited by 42% and 56%, respectively. Cm‐loaded nanofibers showed limited cytoxicity on fibroblasts and embryonic stem cells, with viability greater than 96% for all conditions tested. These results suggest that Cm can be successfully incorporated into electrospun nanofibers and that these fibers could be used for wound healing applications with minimal cytotoxicity to the surrounding tissue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.