Abstract

AbstractSilver nanoparticles were covalently coated on a glass surface by overnight exposure of the glass substrate to nanoparticle solutions, using 3‐aminopropyltriethoxysilane (APTES) as a coupling agent. Washing and air‐drying yield a uniformly coated glass substrate, which can be used as a material capable of killing harmful microorganisms in food industry. Nanoparticles are stable on the glass surface and are not washed away by water; they even remain on the glass surface under short‐term ultrasonic irradiation. The morphology of silver nanoparticles on the glass substrate was characterized by scanning electron microscope (SEM). The existence of Ag nanoparticles on the substrate was also confirmed by ultraviolet‐visible (UV–Vis) spectroscopy. Fourier transform infrared (FT‐IR) measurement shows that the connection is based on covalent bonds between silver nanoparticle surface/APTES molecules. Combining the effects of low cost and effectiveness in prohibiting the growth of Escherichia coli, such materials are expected to be used as antibacterial coatings, which may have large potential applications in food industry. Copyright © 2008 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.